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Abstract
Recent decades have seen the rapid expansion of scholarship that identifies societal responses to
past climatic fluctuations. This fast-changing scholarship, which was recently synthesized as the
History of Climate and Society (HCS), is today undertaken primary by archaeologists, economists,
geneticists, geographers, historians and paleoclimatologists. This review is the first to consider how
scholars in all of these disciplines approach HCS studies. It begins by explaining how climatic
changes and anomalies are reconstructed by paleoclimatologists and historical climatologists. It
then provides a broad overview of major changes and anomalies over the 300,000-year history of
Homo sapiens, explaining both the causes and environmental consequences of these fluctuations.
Next, it introduces the sources, methods, and models employed by scholars in major HCS
disciplines. It continues by describing the debates, themes, and findings of HCS scholarship in its
major disciplines, and then outlines the potential of transdisciplinary, ‘consilient’ approaches to the
field. It concludes by explaining how HCS studies can inform policy and activism that confronts
anthropogenic global warming.

1. Introduction

The idea that changes in climate influenced human
history can be traced back to antiquity (Glacken
1973). Few sought physical evidence for these changes
until the seventeenth century, when some scholars
began to interpret marine fossils and erratic boulders
as relics of ancient, radically different climates, while
others started to identify fluctuations in the out-
put of the Sun and other stars (Tassoul and Tassoul
2004, Tierney et al 2020a). Many European intellec-
tuals argued that climate—a condition they defined
as synonymous with latitude or local air quality—
determined human physical, mental, andmoral char-
acteristics (Livingstone 1991, Fleming 1998). It was an
assumption they used to justify colonial conquest—
and it implied that a gradual change in climate could

alter the fortunes of civilizations (Zilberstein 2016,
Warde 2018). In the nineteenth century, scientists in
newly professionalized disciplines began to speculate
that these changes could unfold on human timescales.
Their motivations included a growing awareness of
solar variability; new efforts to monitor and exploit
colonized landscapes; and, in the Austro-Hungarian
Empire, a unique quest to legitimize empire by
uncovering how atmospheric circulation connec-
ted otherwise isolated populations. (Coen 2018,
Heymann and Achermann 2018, Mauelshagen 2018,
Morgan 2018).

In the closing decades of the century, astro-
nomer A. E. Douglass realized that variations in
the width of growth rings in trees could serve as
proxies for seasonal precipitation (1914). By then,
some economists and geographers had started to
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look for statistical relationships between trends in
grain prices, weather, and hypothesized causes for
weather (such as sunspots) (Jevons 1875, Brück-
ner 1895). With their controversial studies as inspir-
ation, geographer Ellsworth Huntington used the
assumption that an ideal climate existed for civil-
ization to argue that century-scale changes in cli-
mate, identified byDouglass in tree rings, had enabled
the rise and triggered the downfall of past societ-
ies (Huntington 1913a, 1917a, 1917b). Meanwhile,
oceanographer Otto Pettersson concluded that cli-
matic changes—determined, he thought, by the pos-
ition of the Moon and Sun relative to Earth—had
shaped the history of Norse settlements in fifteenth-
century Greenland and Iceland (Pettersson 1914,
Utterström 1955). These claims eventually spurred
the development in distinct regional research cultures
of new, radically interdisciplinary fields of study that
gradually grew in sophistication and were recently
synthesized as the History of Climate and Society,
or HCS (McCormick 2019, Storozum et al 2019,
Degroot et al 2021).

HCS may be defined as the study of human
responses to trends, anomalies, and regular variability
in past climate. It is a fast-growing field that is today
undertaken primarily by archaeologists, economists,
geneticists, geographers, historians and paleoclimato-
logists (Degroot et al 2021). Here, we provide the first
survey of the field as it is practiced in all of these dis-
ciplines, and as it considers the entire, approximately
300 000 year history of anatomicallymodern humans.
Since HCS depends on accurately identifying past
climatic changes, we begin by explaining how these
changes are identified, or ‘reconstructed’, by paleocli-
matologists and historical climatologists. We provide
a broad overviewofwhat reconstructions reveal about
how climate changed over the past 300 000 years. We
then introduce the distinct evidence, methods, and
models used by scholars in major HCS disciplines.
We identify key findings and themes in each discip-
line, by selecting what we consider particularly influ-
ential or representative case studies. We describe the
potential of transdisciplinary, ‘consilient’ approaches
toHCS scholarship (Lang et al 2012), and conclude by
explaining how HCS scholarship may inform efforts
to cope with today’s global warming.

2. Reconstructing climate change

For the period before the late nineteenth century,
when colonial states established weather stations
with reliable meteorological instruments across their
growing territories, our knowledge of past climate
comes primarily from proxy data in the archives of
nature. Examples of proxy records include the annual
rings of trees, the geochemistry of cave formations
and coral skeletons, the composition and contents of
polar and high-altitude glaciers and ice sheets, and the
organic and inorganic components of lake and ocean

sediments (figure 1) (Baumgartner et al 1989, Jones
et al 2009, Bradley 2014, Kaufman et al 2020b).

Proxy records from these archives are the res-
ult of biological, chemical, and physical processes
by which organisms or systems sense the variabil-
ity of their environment and record it in a mater-
ial archive whose characteristics we can observe and
measure (Evans et al 2013). Paleoclimatologists typ-
ically reconstruct past climate from these data by
inverting this chain of processes, either quantitatively
or qualitatively. To that end, they use measurements
of the proxy system and an understanding of how it
reflects its past environment to estimate the condi-
tions under which it formed. This inverse process of
paleoclimate reconstruction is often imperfect, how-
ever, necessarily making inference from our modern
observations of the proxy toward the past environ-
ment without complete knowledge or representation
of how the archive was formed and how accurately
or uniquely the sensor recorded the climate signal
of interest (Hughes and Ammann 2009, Inkpen and
Wilson 2009, Tingley et al 2012, Evans et al 2013).

Past climate reconstructions may be relative and
qualitative—classifying periods as wetter or drier, for
example, and warmer or colder—based on amechan-
istic or physical understanding of the proxy. Altern-
atively, reconstructions can be absolute and quantit-
ative, with the proxy data measurements transformed
statistically into climatemetrics like temperature, pre-
cipitation, soil moisture, salinity, or features of the
large-scale ocean or atmosphere circulation (Hughes
and Ammann 2009, Tingley et al 2012, Hu et al 2017).
Where proxy records overlap directly with instru-
mental observations, statistical estimates of past cli-
mate can be directly calibrated in time and valid-
ated on a portion of withheld instrumental data. In
those cases where proxy records are either too low
resolution (each measurement reflecting decades or
centuries) or where the chronology is too uncertain
(the time of formation constrained with decades or
longer), statistical transfer functions using a space-
for-time calibration can be used to estimate climate
variables from the proxy measurements (Birks et al
2010, Juggins and Birks 2012). Chronology is critical,
as it provides evidence for the sequence of events and
therefore is a prerequisite (although not sufficient) for
determining both physical or social causality.

Every paleoclimate reconstruction comes with
uncertainties caused by the imperfect reflection
of climate variability by the proxy system; the
assumptions and methods used to estimate past
climate from natural archives; and the limits of
chronological precision. Each type of proxy record
has distinct advantages and limitations. For instance,
tree-ring records are well-replicated and provide
exact annual chronology and so can be calibrated
directly against the overlapping instrumental record;
however, they are largely limited in their length to
the last millennium or less and most of these records
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Figure 1. Spatial distribution of paleoclimate and paleoenvironmental data for major proxy data types archived at the NOAA
World Data Center for Paleoclimatology (data served from www.ncei.noaa.gov/products/paleoclimatology on 1 March 2022). As
discussed in detail in the text, each proxy type has advantages and disadvantages for reconstructing past climate with respect to
human history. In particular, low temporal resolution and chronological uncertainties may limit a proxy’s applicability when
assessing the link between specific events in human history and climate extremes, even though they can provide information on
climate change and variability on centennial or longer timescales relevant to longer-term cultural change and human evolution.

are from Northern Hemisphere terrestrial regions
(George 2014, Anchukaitis and Smerdon 2022). Mar-
ine sediment records provide much longer records of
past climate, potentially many millions of years, but
are usually lower resolution (centuries to millennia),
time-uncertain (by hundreds of years), and biased
toward coastal marine environments.

Climate changes have provoked responses in
humanmaterial culture that provide additional prox-
ies for climate reconstruction, in what historical
climatologists call the ‘archives of societies.’ These
archives include either observations of past weather,
usually as recorded in surviving textual evidence, or
evidence of activities that must have been profoundly
influenced by weather, such as autumn harvests or the
use of canals in winter. Sometimes they are both: log-
books written to aid navigation in the age of sail, for
example, include both wind or sea ice measurements,
and descriptions of marine activities that reacted to
the velocity and direction of wind or the thickness
and distribution of sea ice (García-Herrera et al 2005,
García-Herrera et al 2018,Degroot 2020,Degroot and
Ottens 2021). It can be easy to confuse one kind of
source with another; artistic depictions of extreme
weather could be weather observations, for example,
but more commonly were created through actions
only indirectly influenced by weather (Brönnimann
et al 2018, Pfister 2018).

The archives of society should also be considered
with appropriate skepticism. Textual evidence for
past weather should never be taken at face value,

since observers usually had many motivations for
recording weather and often limited means of meas-
uring weather. Such evidence can be discontinu-
ous unless archived by institutions, and typically
focuses on weather extremes rather than averages.
Records of activities influenced by weather should
similarly be used with caution, since those actions
were inevitably affected by many other forces. His-
torical climatologists accordingly use index systems
to quantify and standardize their qualitative inform-
ation on simple ordinal scales that can sometimes
be calibrated to modern instrumental measurements.
Reconstructions createdwith index systems can reveal
climatic trends with uniquely high resolution, for
places, times, or seasons that may be difficult or
impossible to cover using the archives of nature
(Brázdil et al 2005, Blöschl et al 2020, Nash et al 2021).

3. Climatic changes and causes inHomo
sapien history

On multi-millennial timescales, climate change over
the 300 000 year history of anatomically modern
humans was paced by the changes in the Earth’s orbit,
which control how incoming solar energy (insola-
tion) is distributed latitudinally across the planet and
over the seasonal cycle. These orbital cycles include
eccentricity (how elliptical the Earth’s orbit is, a
100 000 year cycle), obliquity (changes in the tilt of the
planet, a 41 000 year cycle) and precession (the tim-
ing of perihelion in the seasonal cycle, a 23 000 year

3
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Figure 2. Global mean surface temperature changes for the past ca. 350 000 years. The curve is a composite of three
reconstructions: (1) Snyder (2016) between 350 000 and 24 000 years; (2) Osman et al (2021) between 24 000 and 2000 years,
(3) a composite estimate of temperature for the last 2000 years (the Common Era) from the Intergovernmental Panel on Climate
Change Fifth Assessment Report (IPCC AR5) compilation (Masson-Delmotte et al 2013) and more recent reconstructions by
Stoffel et al (2015), Schneider et al (2015), Wilson et al (2016), Guillet et al (2017), Anchukaitis et al (2017) and the PAGES 2k
Consortium (2019). Temperatures are shown relative to the estimated mean of the preindustrial period. Uncertainties prior to the
Common Era are those estimated in the original publications. Uncertainty in the composite of the last 2000 years is based on the
full temperature range of the 21 reconstructions included in the composite.

cycle). By changing the seasonal amount of insol-
ation in the high latitudes, these cycles, combined
with ice-albedo feedbacks and changes in greenhouse
gasses (Ruddiman 2006) drove three rounds of expan-
sion and melting of the high latitude ice sheets in the
last 300 000 years (figure 2). Feedback is an essen-
tial concept in climate scholarship; it refers to the
outcome of a change that either amplifies (a positive
feedback) or mutes (a negative feedback) the initial
change. A positive feedback magnifies changes in the
Earth system such that a small initial change results in
an outsized outcome.

During glacial periods, global temperature was
perhaps 6 ◦C colder than preindustrial conditions
(Snyder 2016) (figure 2). Large ice sheets covered
northern North America and Eurasia, leading to a
drop in global sea level of around 120 m (Waelbroeck
et al 2002). This sea level change exposed the Ber-
ing Strait land bridge, connected the British Isles and
southern Scandinavian islands via a dry North Sea
region known as Doggerland, and revealed shallow
shelves in the tropics. In the Indonesian region, the
emergence of the Sunda and Sahul shelves shifted the
patterns of tropical rainfall, resulting in extreme dry-
ing (Windler et al 2019). Overall, global climate was
drier (Bartlein et al 2011), since a cold atmosphere
holds less water. However, there were regional excep-
tions. The southwest region of North America was
much wetter, for example, as the Laurentide ice sheet
deflected winter storms farther south (Oster et al
2015). Likewise, not all places on Earth were colder
during glacial periods. Beringia (present-day Alaska
and northeastern Siberia) experienced minimal cool-
ing (Bartlein et al 2011, Tierney et al 2020b) and
remained unglaciated (Glushkova 2001) because the
ice sheet caused a change in atmospheric circulation
that made the region warmer and drier (Löfverström
and Liakka 2016).

On millennial timescales, the Northern Hemi-
sphere experienced a number of rapid fluctuations
in temperature during the last glacial period, known
as Heinrich Events (1988) and Dansgaard–Oeschger
events (Johnsen et al 1992). Within a matter of years,
temperatures over Greenland changed by more than
10 ◦C during these events, and these changes endured
for more than a millennium (Johnsen et al 2001).
There is evidence that such events influenced climate
not only in the high latitudes but also in the tropics,
where they are associated with weaker Indian-Asian
monsoon rains (Wang et al 2001).

During interglacial warm periods, global temper-
ature was similar to, or perhaps slightly higher than,
pre-industrial (that is, late nineteenth-century) con-
ditions (Snyder 2016). Northern Hemisphere sum-
mer temperatures, however, were 3 ◦C–5 ◦C warmer
(Otto-Bliesner et al 2021), leading to partial melt-
ing of the Greenland ice sheet and 6–9 m of sea
level rise (relative to pre-industrial time; Kopp et al
2009). A defining characteristic of interglacial periods
is an intensification and expansion of the African and
Asian monsoon systems (Otto-Bliesner et al 2021).
For example, during the Last Interglacial, the African
monsoon system expanded deep into the Sahara
Desert (Drake et al 2011) and possibly as far as the
Levant region in the eastern Mediterranean (Drake
et al 2011, Torfstein et al 2015, Tierney et al 2017a).

The Last Glacial Maximum (LGM) peaked at
about 20 000 BP (‘before present,’ a radiocarbon dat-
ing convention meaning years before 1950). There-
after, global temperatures rose approximately 7 ◦C,
an increase paused only temporarily by the Younger
Dryas event, the last millennial-scale climate per-
turbation (Alley 2000, Osman et al 2021) (figure 2).
As with previous glacial cycles, this deglacial warm-
ing was triggered by orbital forcing, but the dir-
ect radiative drivers were the rise in greenhouse
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gasses (carbon dioxide and methane) and the loss
of the Northern Hemisphere ice sheets. In the wake
of the Younger Dryas, the Pleistocene geological
epoch (2580 000–11 700 BP) distinguished by altern-
ating glacial and interglacial periods, gave way to the
Holocene epoch (11 700 years BP to pre-industrial),
the current interglacial period. The Laurentide ice
sheet, which once covered a large portion of North
America, lasted until about 7500 years ago (Peltier
et al 2015). Shortly before its demise, a rapid cool-
ing of approximately 6 ◦C occurred over Greenland at
8200 BP (Thomas et al 2007). This ‘8.2-kiloyear event’
is seen in Northern Hemisphere climate records, and
also may be associated with a 1000 year long drying
period in Northern Africa (Rohling and Pälike 2005,
Morrill et al 2013, Tierney et al 2017b).

From about 7000 years ago to the twentieth cen-
tury, global mean annual temperatures were compar-
atively stable (figure 2), even if temperatures evolved
differently at local to regional scales and for specific
seasons. Reconstructions of the Holocene global tem-
perature changes showed a ‘Holocene Thermal Max-
imum’ at around 6–7000 BP (Marcott et al 2013,
Marsicek et al 2018, Kaufman et al 2020a). However,
the recent reconstruction of Osman et al (2021) does
not show this feature, and there is an ongoing debate
aboutwhether theHolocene ThermalMaximum is an
artifact of spatial bias (Osman et al 2021) or reflects
a seasonal (summer) signal (Bova et al 2021, Wanner
2021).

In either case, while global mean annual tem-
peratures were fairly stable through the Holocene,
this period saw large shifts in the hydrological
cycle (Mayewski et al 2004). In the early Holocene
(11 000–5000 BP) the African monsoon intensified
once again, resulting in an expansion of grasslands,
shrubs, and perennial lakes into the Sahara Desert
(DeMenocal and Tierney 2012). Monsoonal rain-
fall also intensified in India; meanwhile, the South
American monsoon was much weaker (Brierley et al
2020). In the Mediterranean and parts of Asia there
is speleothem evidence for a period of intense drying
during a ‘4.2-kiloyear event’ (beginning in 4200
BP) that, despite its name, differed greatly from the
8.2-kiloyear event (Carolin et al 2019).

Enhanced spatial coverage and improved tem-
poral resolution allow for detailed paleoclimate
reconstructions of the late Holocene and the Com-
mon Era (CE, from the year 1 to the present) using
tree-rings, corals, ice cores, speleothems, sediment
records, and other proxies with sufficient temporal
resolution (Frank et al 2010, PAGES2k 2013, Smer-
don and Pollack 2016, Emile-Geay et al 2017, Esper
et al 2018, PAGES 2k Consortium 2019, Anchukaitis
and Smerdon 2022). Prior to the onset of modern
anthropogenic warming, temperature reconstruc-
tions spanning the last 2000 years reflect a mix of
forced and internal variability across a range of time
scales, from interannual to millennial, including the

seasonally and spatially variable influences of orbital
forcing (Esper et al 2012, Lücke et al 2021).

The most important Late Holocene forcing prior
to the Industrial Revolution came from explosive vol-
canic eruptions, which can reduce incoming short-
wave solar radiation by injecting sulfate aerosols into
the stratosphere, cooling surface temperatures, alter-
ing the hydrological cycle, and affecting ocean and
atmospheric circulation (Timmreck 2012, McGregor
et al 2015, Esper et al 2018). Temperature recon-
structions show periods of widespread decadal-scale
cooling linked to explosive volcanism in the 6th,
15th, 17th, and 19th centuries in particular. For-
cing from volcanic eruptions was the most import-
ant contributor to initiating and sustaining the ‘Little
Ice Age’ (LIA), which paleoclimatologists date from
the 14th through mid-19th centuries (Robock 1979,
Crowley 2000, Zhong et al 2011, Esper et al 2018,
Slawinska and Robock 2018, Anchukaitis et al 2019,
Brönnimann et al 2019) as well as the ‘Late Antique
Little Ice Age’ (LALIA), a period of uncertain spa-
tial and temporal extent that began with two large
eruptions in 536 and 540 CE (Gunn 2000, Larsen et al
2008, Churakova et al 2014, Sigl et al 2015, Bünt-
gen et al 2016, Toohey et al 2016, Newfield 2018).
Helama et al (2017a) suggested that the LALIA was
embedded within a somewhat longer but ambigu-
ously dated ‘Dark Ages Cold Period’ (DACP), span-
ning from approximately 400–765 CE.

Solar variability is now widely thought to play
a minor role in climate fluctuations over the Com-
mon Era (Schurer et al 2014), yet the mechanisms
for and significance of solar influences on climate
remain uncertain across a range of spatial and tem-
poral scales (Gray et al 2010, Lockwood 2012). Cold
summer temperature anomalies did coincide with
Grand Solar Minima in the 14th, 16th, and 17th cen-
turies (Anchukaitis et al 2017). Even during century-
scale events, however, internal climate system variab-
ility (which arises naturally without changes in plan-
etary energy balance from the complex interaction of
oceans and atmosphere) and earth system feedbacks
were very important contributors to the temporal
evolution of cooling; the spatial patterns of temperat-
ure anomalies; and interannual-to-multidecadal cli-
mate variability at the local and regional scale (Goosse
et al 2005, Jungclaus et al 2010, Fernández-Donado
et al 2013, Lehner et al 2013, Schleussner and Feulner
2013, Helama et al 2017b, Anchukaitis et al 2019,
Neukom et al 2019).

TheMedieval Climate Anomaly (MCA; sensu lato
800–1300 CE), a period of relatively warm temper-
atures spanning the first and second millennia of
the Common Era, likely reflects a combination of a
weak increase in radiative forcing and internal cli-
mate system variability (Goosse et al 2005, 2012,
Fernández-Donado et al 2013). In particular, spa-
tial climate reconstructions of medieval temperatures
suggest internal variability played a strong role in
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determining the magnitude and regional timing of
temperature maxima (Goosse et al 2005, Diaz et al
2011, Neukom et al 2019). Indeed while it is there-
fore possible to roughly identify periods of the Com-
mon Era corresponding to large- and centennial-scale
temperature anomalies, such as the MCA, LIA, and
LALIA, at the local to regional scale, and from inter-
annual to decadal periods, internal variability would
have played a very important role in the temperature
anomalies experienced by human societies (Degroot
et al 2021).

Internal variability played an even greater role
for precipitation and soil moisture anomalies, which
also had impacts on agricultural productivity. Proxy
reconstructions show spatial and temporal variabil-
ity in past hydroclimate dominated by the influence
of internal variability, including large-scale modes of
ocean-atmosphere like the El Nino Southern Oscilla-
tion (ENSO) (Cook et al 2010a, 2010b, 2011, 2014,
2018, Hunt 2011, Ault et al 2013, Tierney et al 2013,
Ummenhofer et al 2013, Coats et al 2015, 2016,
Stevenson et al 2015, PAGES Hydro2k Consortium
2017). Ultimately, analyses that assume that uniform,
widespread, or persistent warm and cold, or wet
and dry conditions persisted during amorphous cli-
mate periods like the LIA are seldom justified when
examining the spatial and temporal scales of interac-
tions that exist between climate and human society
(Degroot et al 2021).

4. Uncovering human responses: evidence

Evidence for human responses to these climatic
changes survives in everything from the genes and
languages of present-day populations, to the ruins,
trash heaps, archived documents, and art of ancient
societies. HCS scholarship requires many disciplines
primarily because this evidence is so diverse and so
abundant.

Past demographic events (such as population bot-
tlenecks and migrations) and episodes of natural
selection for genetic variants (in for example genes for
disease resistance or highmetabolism), left signatures
in the genetic makeup of contemporary populations.
Because climates transformed local environments
and thereby influenced how human populations
could inhabit them, the DNA of contemporary
individuals can suggest compelling links between
human and climatic histories. Large databases of
genetic markers have been assembled for studies
of demography and selection, with much of the
data being publicly available (e.g. The 1000 Gen-
omes Project Consortium 2015). However, the large
amount of information that can be gleaned from
genomes, including inferences about health condi-
tions, has raised a number of ethical issues of con-
sent (Caulfield andMurdoch 2017). Current practices
accordingly require full involvement with communit-
ies that donate genetic material to make sure that all

participants are properly informed and involved in
research (Claw et al 2018).

Over the last two decades, the development of
techniques to extract DNA from ancient remains
(such as bones and hair) has revolutionized our abil-
ity to reconstruct human history. It is now possible
to build time series that directly record the pro-
gressive accumulation of genetic signatures from past
events (Orlando et al 2021). However, preservation of
ancient DNA is greatly dependent on environmental
conditions. The permafrost has yielded DNA from
hundreds of thousands of years ago (van der Valk et al
2021), but recovering DNA from the tropics is very
challenging even when dealing with much shorter
time horizons (Orlando et al 2021). Recent devel-
opments in techniques that recover DNA from sed-
iment have further opened the possibility of building
detailed time series of site occupation (Crump 2021),
although fragmentedmaterial recovered in this way is
not amenable to complex population genetic analysis
(Sigsgaard et al 2020).

The archaeological record affords a wide variety
of sources for the study of past interactions between
environments and human societies. Most funda-
mentally, archaeological data in the formof diachron-
ically and spatially structured site distributions can be
used to relate human settlement to broad ecological
parameters, and to changes in those parameters. At
the core of archaeology is material culture, much of
which can be understood as ‘extra-somatic means of
adaptation’ (Binford 1962). Changing forms of hunt-
ing equipment, farming or herding practices, mobil-
ity, and political arrangements can be read from the
archaeological record directly (Evans 2002, Hussain
and Riede 2020).

In addition, archaeological excavations com-
monly yield not only human-made artifacts but
also many ‘ecofacts,’ or ‘geofacts.’ These include
plant and animal remains, soils, and bio- or geoar-
chaeological substances that require laboratory ana-
lysis. These substances are by no means limited to
DNA, and include lipids, isotopes, and other residues
that are interpreted by specialists in, for example,
environmental archaeology, geoarchaeology, archae-
ozoology, and palaeoethnobotany (Clift et al 2011,
Sandweiss and Kelley 2012, Murphy and Fuller 2017).
Increasingly, archaeological sources provide a bridge
between evidence in history and genetics.

Climate historians, along with many geographers
and economists, primarily rely on written accounts
of the past. Accordingly, their studies have long
focused on times and places that are well docu-
mented by surviving textual evidence. To be useful for
climate historians, such evidence must either men-
tion weather directly, or describe environmental and
social changes clearly influenced by weather. Docu-
ments may suggest interactions between climatic and
social changes on very different scales. Diaries and
correspondence, for example, may reveal the lived
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experience of weather and associated ecological phe-
nomena, such as plant and animal phenology, while
accounts archived by institutions and governments
can record the shifting fortunes of entire societies
or economic sectors confronted with climate change
(Huhtamaa and Helama 2017a, García-Herrera et al
2018,White et al 2018b, Van Bavel et al 2019, Degroot
2020, Pfister and Wanner 2021).

Some sources interrogated by climate historians
register human and environmental changes across
many scales in time and place. Visual art, for instance,
may depict discrete, local events—skaters on a cold
winter’s day, for example—while using pigments and
appealing to regional markets in ways that registered
decadal economic trends, and while depicting cul-
tural values, ideas, or artifacts that took centuries to
develop (Behringer 2010, Ray 2019). Climate histor-
ians work to identify the influence of weather and
climate across different resolutions, especially when
combining source types, and to isolate the effects of
weather from those of cultural, political and socioeco-
nomic forces (Bell and Ogilvie 1978, Chiari 2019, Van
Bavel et al 2019, Williamson 2020).

Although the textual record useful for historians
can seem overwhelmingly vast, documentary evid-
ence is in fact unavailable formuch of the globe before
the eighteenth century (Brönnimann and Wintzer
2019). In regions and periods where textual sources
are sparse or nonexistent, historians are beginning
to employ historical linguistic data to understand
human responses to past climate change (De Luna
2016, Hannaford and Nash 2016, Degroot et al 2021).
Historians may also use oral histories to identify
environmental changes, often at relatively low resol-
ution but occasionally across centuries or even mil-
lennia (Cruikshank 2001, 2007). Still, the limitations
of historical sources across large scales in time and
space today encourage collaboration between histor-
ians and scholars in other disciplines, particularly
archaeology and paleoclimatology.

5. Uncovering human responses: methods

Population genetics provides tools both to recon-
struct past demography and thereby to quantify
human responses to climate change, and to study spe-
cific genes that underpin selective responses to cli-
mate. The techniques used for these purposes depend
on the nature of the data available. For demographic
reconstructions, earlier studiesmostly relied onmito-
chondrial DNA (mtDNA). The small size of themito-
chondrial genome and its haploid nature make it
an easy target for sequencing, both in contemporary
and ancient samples. However, the power of demo-
graphic reconstructions based on mtDNA is limited,
since mtDNA is a single, non-recombining marker.
While it is easy to model its inheritance, the genea-
logy of a single marker is highly stochastic and can
be poorly representative of underlying demographic

history (Balloux 2010). Nuclear markers can provide
much greater power, but the large size of the nuclear
genomemeant that, until a decade ago, it was prohib-
itive to build extensive datasets of complete genomes.

Single nucleotide polymorphism (SNP) chips,
which genotype pre-defined positions of the genome
known to be variable, have been used extensively to
quantify human population structure. A challenge
when using SNP chips is that the process of choos-
ing the positions of interest (known as ‘ascertain-
ment’) is biased towards variants more common in
the discovery panel (the group of individuals used to
choose the SNPs), and towards variants with inter-
mediate frequencies (as rare markers are unlikely to
be present in the small discovery panel) (Nielsen
2004). This ascertainment bias prevents the use of
many demographic modeling techniques that rely on
unbiased estimates of variant frequencies (Nielsen
2004, Albrechtsen et al 2010). Geneticists once used
microsatellites—repetitive regions in the genome—as
markers for population genetics analyses. However,
modeling their evolution is challenging, and these
markers have fallen out of fashion as they are not cost
effective.

Given the sharp drop in the cost of sequencing
over the last decade, whole genome sequencing has
become the standard approach,with projects building
datasets of hundreds or even thousands of genomes
(The 1000 Genomes Project Consortium et al 2015).
Yet geneticists studying ancient material with scarce,
damaged, or fragmented DNA may have difficulty
choosing which geneticmarkers to focus on (Orlando
et al 2021). Shotgun sequencing of the whole gen-
ome is possible, but expensive as much of the DNA
found in ancient remains originated in microbes—
rather than humans—and is therefore not relevant
to most HCS studies. Targeted capture uses the same
logic as SNP chips and focuses on specific positions
(Orlando et al 2021), but the ascertain bias that res-
ults from concentrating on these positionsmeans that
the data produced by thismethod can only be used for
certain types of analysis.

Archaeologists have also developed an extensive
toolbox for approaching human-environment rela-
tions. As accurate chronologies are essential in virtu-
ally any such attempt, dating methods and the down-
stream statistical treatment of dating information
has received much attention. Complementing chro-
nology, archaeologists have long used Geographic
Information Systems (GIS) to aid their analysis of
distribution data. The integration of digital methods
into environmental archaeological analyses is increas-
ingly seamless, and offers useful points of contact
with neighboring disciplines such as geography (Siart
et al 2017). A similar form of methodological fellow-
ship aligns environmental and geoarchaeology with
the biological and geological sciences respectively
(Pollard 1999). Basic and advanced field and labor-
atory techniques developed in the former can often
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Figure 3. Different methods and sources used in HCS scholarship. Scholars may use both methods in the same publication, but
more commonly, only one method is used (White and Pei 2020).

be transferred to the specific study of anthropogenic
soils and biological samples deriving from archaeolo-
gical contexts.

Archaeology’s grounding in fieldwork allows for
the study of human responses to climate change
across a range of spatiotemporal scales. Occasionally,
a single site will yield evocative evidence of abandon-
ment or adaptation. At other times, such responses
will be more clearly visible in the large-scale patterns
emerging from inter-site comparisons. Likemany sci-
entific disciplines, archaeology is experiencing a rapid
shift towards computational methods and working
with large quantities of data. The often-fragmentary
nature of archaeological evidence and the variable
granularity of the archaeological record sometimes
poses challenges. However, on both epistemological
(Currie 2018) and practical (Caseldine and Turney
2010, Izdebski et al 2016, Boivin and Crowther 2021)
grounds there are good reasons to believe that assess-
ments of past human-environment relations based on
archaeological materials are becoming increasingly
robust.

In general, climate historians employ the same
techniques of source analysis and criticism that are
followed by most other historians. To use these tech-
niques, historians study the historical contexts in
which sources were produced; learn the methods by
which sources communicated information (in the
case of textual sources, often through training in lan-
guages or paleography); and then identify sources in
repositories (for textual sources, in archives or lib-
raries through consultation with archivists and lib-
rarians). In order to ascertain the legitimacy and
authenticity of these sources as evidence useful for

confirming or rejecting historical hypotheses, cli-
mate historians identify which individuals or insti-
tutions were responsible for them, and when, where,
how, and with what purpose they were created
(Howell and Prevenier 2001, Berkhofer 2008). The
historical method can discourage climate historians
from assuming that historical sources provide reli-
able and transparent accounts of weather, or activ-
ities influenced by weather, which in turn can dis-
courage them from making spurious connections
between human and climatic histories. Scholars in
other disciplines who make use of historical primary
sources—including geographers and economists—
may use historians’ interpretations of these sources
without realizing that those interpretations are not
universally agreed upon by historians (Van Bavel et al
2019).

Most HCS scholars who use historical sources
employ one of two broad methods for establishing
that climatic changes caused or helped cause soci-
etal changes (figure 3). Historians largely follow what
White and Pei have recently coined the cause-of-effect
method by deriving inferences from close textual ana-
lysis and contextualization; comparing outcomes in
similar cases of social or climatic change; and con-
sidering counterfactual scenarios. These longstand-
ing elements of the historian’s toolkit are used by cli-
mate historians to develop narratives that establish
climatic changes or anomalies as both necessary and
sufficient conditions in particular instances of social
change (White and Pei 2020). Geographers and eco-
nomists, by contrast, largely use an effect-of-cause
method by quantifying historical evidence and find-
ing correlations between climatic and social trends
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(De Vries 1980, White and Pei 2020). Significant cor-
relations, interpreted at times using statistical meth-
ods for identifying causation, can ostensibly reveal
the control of the climate variable over diverse social
variables (Zhang et al 2010, Brunt 2015, Huhtamaa
and Helama 2017b). For geographers and econom-
ists, this method establishes climate change as a cause
of different forms of social change, without being
necessary or sufficient in all instances of that social
change (White and Pei 2020).

These different ways of establishing causation are,
in principle,mutually compatible. Yet in practice geo-
graphers and economists have criticized the cause-
of-effect method as being insufficiently rigorous or
‘scientific,’ and too limited to specific case studies
that lack predictive power. At the same time many
historians have dismissed the effect-of-cause method
as insufficiently grounded in textual analysis, and
lacking interpretive power in contingent historical
case studies (Degroot 2018a, Zhang et al 2019). Sub-
divisions also persist between scholars using each
method. While some historians employing the cause-
of-effect method, for example, conclude that mod-
est climate changes definitely transformed past soci-
eties, others focus on smaller scales of analysis, and
emphasize uncertainties that follow from gaps in sur-
viving evidence. Some use probabilistic terminology
to identify connections between climatic and social
processes unfolding across different scales in time and
space (Degroot 2018c).

Recently, scholars have identified systematic
shortcomings in how many HCS studies have used
both cause-of-effect and effect-of-cause methods.
HCS studies using either method have, for example,
misinterpreted climate reconstructions; focused
excessively on large spatial or temporal scales; iden-
tified simplistic dichotomies between vulnerable and
resilient societies; devoted insufficient attention to
uncertainty; and equated correlation too easily with
causation. To overcome these problems, scholars have
introduced a research framework consisting of binary
questions that encourage greater integration ofmeth-
ods and sources from distinct disciplines (Degroot
et al 2021).

6. Uncovering human responses: models

The models used by geneticists to reconstruct demo-
graphy depend on the type of data available. Mod-
els that reconstruct gradual changes in popula-
tion sizes through time, such as Bayesian skyline
plots of mtDNA or sequentially Markovian coales-
cent (PSMC) methods for whole genomes, tend to
focus on a single population that is assumed to be
isolated—meaning it does not receive anymigrants—
or otherwise on a pair of connected populations
(Ho and Shapiro 2011, Mather et al 2020). These
approaches rely on the logic that lineages are more
likely to merge when populations are small, and less

likely when populations are large. According to this
reasoning, the rate at which lineages merge at dif-
ferent times can be converted to population sizes
(althoughmigration will also affect this rate, and thus
confound size reconstructions).

Models that consider the relationship among
multiple populations (and consequently allow for
migration) often require geneticists to define spe-
cific events, which can then be tested and quanti-
fied. For example, geneticists can identify the pres-
ence of population bottlenecks and correlate them
with periods of climate change that reduced the pro-
ductivity and in turn the habitability of local land-
scapes. Inferred demographic changes, however, have
to be interpreted with care. Population genetics mod-
els reconstruct effective population sizes (the sizes
of an idealized, unstructured and randomly mating
population), and these can differ greatly from census
population sizes, owing for example to geographic
substructuring or marriage practices (e.g. Palstra and
Fraser 2012). Climate Informed Spatial GeneticMod-
els have attempted to explicitly reconstruct the pos-
sible influence of climate change on demography by
matching its predicted impact to the observed pat-
terns of genetic differentiation among contemporary
and ancient genomes (e.g. Erikson et al 2012, Delser
et al 2021).

Different aspects of genetic data can be used
to define how compatible a model is with empir-
ical evidence. Geneticists can use an explicit likeli-
hood framework, where the best estimates of demo-
graphic parameters and their uncertainties can be dir-
ectly derived, mathematically, from data. Alternat-
ively, they can use simulations, by comparing sim-
ulated to observed genetic data using frameworks
such as Approximate Bayesian Computation to form-
ally obtain best estimates of demographic parameters
and their uncertainties (Sunnaker et al 2013). Natural
selection can be inferred by looking directly at the fre-
quency of a variant of interest (either by comparing
populations under varying degrees of selection, or
different time points), as well as the signature that
is left behind in sites adjacent to the one of interest
(as selection tends to reduce variability around the
selected site) (Scheinfeldt andTishkoff 2013, Vitti et al
2013).

Various metrics have been designed to capture
and emphasize such signals. A complication in assess-
ing the role of selection is that demographic events
(such as bottlenecks) can generate signals that are
similar to those arising from selection. However,
while demographic signals are spread throughout the
whole genome, selection only acts on a few variants.
Selection tests take advantage of this latter property
by using an outlier approach, where the signature at a
locus of interest is compared to the background levels
across the whole genome. This approach provides
‘candidate’ genes that are likely to be under selec-
tion (though it has a high rate of false positives; e.g.
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Figure 4. A typical representation of the adaptive cycle (top), and Intergovernmental Panel on Climate Change (IPCC) definitions
of vulnerability, resilience, and adaptation (bottom). Many HCS scholars either use the IPCC definitions directly, or develop
similar definitions to conceptualize societal responses to past climate change (Haldon and Rosen 2018, Matthews et al 2019).

Koropoulis et al 2020), and these candidates can then
be indirectly linked with climatic drivers (Rees et al
2020). A few models have also been developed to dir-
ectly link the frequency of alleles to climatic drivers
by looking for correlations between the frequency
of a genetic variant and a climatic variable across
contemporary populations (e.g. Hancock et al 2008).
Recently, techniques have developed to use the time
series provided by ancient DNA, which allow a direct
observation of the changes resulting from selection
(e.g. Schraiber et al 2016, Loog et al 2017).While these
approaches have yet to be used to investigate climatic
effects, they hold much promise for the future given
the exponential increase in the number of human
ancient genomes being recovered.

Correlation in space and time—at different res-
olutions and with variable methodological rigor—
is also often at the heart of archaeological human-
environment studies. Yet many archaeologists believe
that, unless combined with some form of model
for human behavior and culture change, any res-
ulting interpretations remain difficult to substanti-
ate (Contreras 2016), and open to charges of a priori
deterministic biases inherent in chosen study designs
(Arponen et al 2019).

Use of terms such as ‘resilience,’ ‘adaptation,’ and
‘vulnerability’ has become widespread in archaeology

to characterize human responses to climate change.
Many archaeologists have defined resilience as part
of Formal Resilience Theory (RT), or simply RT.
Central to RT is a method for conceptualizing con-
nections between behavioral adaptations in human
populations and external environmental change. This
method is based on the Adaptive Cycle (AC) Model,
in which social-ecological systems pass through four
stages—which may be called growth, conservation,
release, and reorganization—that together constitute
a single cycle (figure 4). Cycles are nested within each
other across different spatiotemporal scales, a feature
called ‘panarchy,’ and connect through ‘revolt’ and
‘remember’ feedback loops. These loops represent
the nonlinear nature of social responses to climatic
changes (meaning their inputs need not be dir-
ectly proportional to their outputs) (Leroy 2006,
Cumming et al 2008). The four domains in each cycle
have different degrees of ‘connectedness’ and ‘poten-
tial,’ which in turn gives themdifferent degrees of resi-
lience. Resilience in the model declines as the system
gains complexity, and only increases during the reor-
ganization/renewal period (Bradtmöller et al 2017).

For HCS scholars, there are advantages to using
RT and the ACmodel. RT arguably provides a power-
ful tool for overcoming deterministic interpretations
of climate change as a direct cause of social change,

10



Environ. Res. Lett. 17 (2022) 103001 D Degroot et al

and it appears to permit straightforward compar-
isons between case studies of resilience (Hegmon
et al 2008). Yet archaeologists have long differed over
whether the AC model is better suited as a heuristic
device or analytical tool, and they have not used the
same definitions for components of the model. The
model has also been difficult to operationalize when
applied to imperfect archaeological datasets (Redman
2005, Bradtmöller et al 2017, Brewer and Riede 2018,
Heitz et al 2021).

Much like geography, the discipline of archae-
ology is divided between those who see cultural
change as largely responsive to internal, political, and
ideational forces, and those who would prioritize
external forces, such as climatic and environmental
change (‘internalists’ still dominate the discipline of
history). Nowhere is this division more obvious than
in discussions of past examples of societal ‘collapse,’
which many archaeologists discern in evidence of
widespread site abandonment that seems to suggest
demographic decline, elevated rates of conflict, and
the disintegration of elite class superstructures. Some
scholars argue on the basis of archaeological evid-
ence that past societies collapsed in the face of cli-
matic variability and change (Diamond 2010, Weiss
2017, Zhang et al 2021), while others question the
evidence for collapse in specific case studies; suggest
alternative causal models for collapse; or challenge
the concept of collapse itself (Coombes and Barber
2005, Hegmon et al 2008, McAnany and Yoffee 2010,
Middleton 2017, Haldon et al 2020). While these
basic attitudes do have subtle consequences for study
design and practice, models seeking to combine exo-
genous and endogenous forces are clearlymost prom-
ising (Butzer 2012, Butzer and Endfield 2012).

Some archaeologists and historians now stress
the potential of archaeological or historical research
to conduct ‘natural experiments’ that compare
chosen study units (such as villages, cities, and
cultures) before, during, and after a climatic
perturbation (Diamond and Robinson 2010, Riede
2014, Manning et al 2017, Bauch 2020). In such
experiments, societal responses to climate change
are always co-determined by the socioeconomic
and political conditions in place at the onset of a
given perturbation. Both social and climatic changes
govern access to resources, which can be identi-
fied in archaeological proxies of risk management
that in turn approximate vulnerability and resilience
(Halstead and O’Shea 1989, Wisner 2004, Riede et al
2017). Proxies for adaptation can then be sought
in changes visible in archaeological remains that
postdate climatic perturbations.

Influenced in part by archaeologists, historians
have also adopted the concepts of adaptation, resili-
ence, and vulnerability (Endfield 2014, Izdebski et al
2018, Xoplaki et al 2018, Degroot 2018c, Degroot
et al 2021). The widespread use of this termino-
logy in HCS scholarship has helped make theoretical

models more applicable across disciplinary bound-
aries (Engler 2012). Yet while the most influential
models in archaeology prioritize change over time,
models in history, geography, and economics typ-
ically focus on the uneven magnitude of changes
across different elements of past societies. In history,
for example, the longstanding impact-order model
(figure 5) typically conceptualizes climatic changes
as having progressively less direct influence on bio-
physical, economic, social, and cultural transforma-
tions within past societies (Pfister 1984, 2007, Kramer
2015, Luterbacher and Pfister 2015, Camenisch and
Rohr 2018). Historians originally developed versions
of thismodel to describe societal responses to climatic
anomalies in particular times and places, then used it
to conceptualize the regional or even continental con-
sequences of climatic trends. They have added com-
plexity to the model by, for example, representing
adaptive responses to climate changes, or adding cul-
tural reactions to every impact level (Camenisch et al
2016a, Ljungqvist et al 2020). Geographers and eco-
nomists developed similar models to identify how cli-
mate change provoked wars and demographic crises,
for instane, by reducing agricultural output, although
their models more consistently include feedbacks
between social changes (Zhang et al 2010, 2011, Pei
et al 2014, Burke et al 2015, Cook and Wolkovich
2016).

Recently, some historians have pointed out that
the impact order model depends on the assump-
tion that climatic changes had more direct impacts
on agriculture or pastoralism than other sectors of
society: an assumption that increasingly does not
seem to have been accurate in many historical con-
texts (Degroot 2018b, Degroot et al 2021). Indeed,
because historians often stress contingency and spa-
tiotemporal particularity in establishing causation,
many have been skeptical of normativemodels—such
as the AC model and to some extent the Impact
Order model—that generalize across outcomes. Cli-
mate historians often benefit from abundant docu-
mentary evidence that can reveal human responses
to weather in granular detail. As a result, they do not
necessarily require models to argue that correlations
between climatic and societal changes reveal causa-
tion. What some historians call for instead are pro-
cess models that generalize mechanisms, and thereby
provide novel ways to conceptualize how climatic
changes spur large-scale social changes. Several recent
studies accordingly consider how climate changes
influenced the availability, quantity, and character
of energy accessible to human populations, but such
approaches are still in their infancy (Degroot 2018c).

An older andmore influential processmodel used
by historians identifies a ‘fatal synergy’ between sharp
reductions in agricultural output that were triggered
or worsened by climatic anomalies, and a host of
social ills that further reduced agricultural productiv-
ity (figure 6). Repeated harvest failures, according to
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Figure 5. A version of the impact order model widely used by climate historians. In the model, the impacts of climate change
become progressively less direct as they filter through environmental; political and socioeconomic; and cultural domains
(Camenisch et al 2016b).

Figure 6. A representation of the ‘fatal synergy’ that, in influential studies by climate historians, worsened societal crises across
large spatial scales that were ultimately triggered by late Holocene climate changes. Feedbacks connect the consequences of
harvest failures to the further devastation of agricultural regions (Parker 2013).

12



Environ. Res. Lett. 17 (2022) 103001 D Degroot et al

the model, ultimately reduced the availability of food
and thereby caused widespread malnutrition, starva-
tion, and famine. By altering the range and repro-
ductive rate of disease vectors, and by weakening
immune systems inmalnourished human and animal
bodies, climatic anomalies also spurred the spread
of epidemic or epizootic disease. Migration from the
famine-stricken countryside circulated epidemics or
epizootics, and compounded overcrowding in cit-
ies that accordingly grew more vulnerable to epi-
demic outbreaks. Mortality among human laborers
and animals essential to pre-modern agro-economies
further reduced food production, and exacerbated
widespread depopulation. Amid these disasters pop-
ular discontent with ruling authorities—who in some
cultures were held directly responsible for weather—
spurred sedition, rebellion, and even wars between
polities looking to exploit one another’s weaknesses.
Pre-modern wars further reduced food availability
through, for example, the conscription of agricultural
laborers, the redirection of grain stocks to armies,
and the plundering of the countryside (Parker 2013,
Degroot 2018b).

Implicit in the concept of the fatal synergy is once
again the assumption that climatic anomalies and
changes had a particularly direct impact on agricul-
ture and pastoralism. Yet HCS scholars have used the
concept to identify feedbacks that are typically hid-
den in the Impact OrderModel, and help explain how
relatively small variations in the climate of the Holo-
cene may have had profoundly destructive, nonlinear
consequences for some pre-modern societies (Parker
2013).

7. HCS findings: genetics

Paleogenetic evidence can reveal compelling correla-
tions between demographic changes in human pop-
ulations and climatic trends. By reconstructing local
environmental conditions, HCS scholars can then
infer causal links between climatic changes and the
migration, expansion, retrenchment, or extirpation
of human populations. Such work can suggest—
but not confirm—relationships between climatic and
human histories in the Pleistocene, whichmay be dif-
ficult to discern using other evidence.

Population genetics played a key role in provid-
ing support for a recent ‘out-of-Africa’ origin of ana-
tomically modern humans (e.g. Cann et al 1987, Fu
et al 2013, Rieux et al 2014, Malaspinas et al 2016).
The timing of the primary out-of-Africa migration
inferred from genetics (65–50 000 BP) suggests a link
between this range expansion and climatic change.
Earlier waves of migration coincided with generally
warm and wet conditions that may have ‘pulled’—
that is, enticed—hunter-gatherers away from their
African territories. Yet the primary out-of-Africa
migration coincided with exceptionally cold and dry
conditions in the Horn of Africa (Liu et al 2015,

Tierney et al 2017a). These conditions may have
‘pushed’ migrants to leave Africa. Since cold water
takes up less volume than warm water, and vast
quantities of water were trapped in ice sheets, sea
levels were low and a southern migratory route out
of Africa was therefore more traversable than it had
been (Beyer et al 2021, Groucutt et al 2021).

Genetic dating of the Pleistocene arrival of mod-
ern humans into the Americas (e.g. Raghavan et al
2015), together with sedimentaryDNA, similarly sug-
gests that the opening of a coastal corridor in the
melting Cordilleran ice sheet may have aided migra-
tion into the Western Hemisphere after approxim-
ately 12 600 BP (Pedersen et al 2016). Nevertheless,
recent archaeological and genetic evidence suggests
far earlier migration into the Americas, when the
corridor had not yet appeared (Moreno-Mayar et al
2018, Becerra-Valdivia and Higham 2020). Paleogen-
etic evidence has encouraged HCS scholars to assume
causation from approximate correlations, but it can
also reveal that population dynamics have long been
shaped by much more than climatic conditions.

Population genetics is in fact blind to population
movements that resulted in no descendants (or at
least, too few to be detectable), and large-scale pop-
ulation expansions often left genetic signatures that
are stronger than, and therefore override, those gener-
ated by local changes in population (Miller et al 2018).
Nevertheless, time series of ancientDNAhave allowed
geneticists to focus on local dynamics, and thereby
to uncover that the climatic oscillations of the Pleis-
tocene and early Holocene coincided with profound
changes in human communities. Analysis of time
series data of aDNA in western Eurasia, for example,
shows a clear population bottleneck during the LGM,
as well as a major population replacement during the
warming period after 14 000 BP (Fu et al 2016, Posth
et al 2016). Populations that persisted in colder cli-
mates during the LGM, such as the Western Hunter
Gatherers and Caucasus Hunter Gatherers, are char-
acterized by shorter runs of homozygosity (a sign
of smaller population sizes) compared to popula-
tions from further south, such as the Early Farmers,
which may have sustained larger populations owing
to comparatively benign climatic conditions (Jones
et al 2015). Using genetic evidence, regional climatic
changes in theHolocene, such as the 4.2 kiloyear arid-
ification of the Arabian Peninsula, have also been cor-
relatedwith bottlenecks in local populations (Almarri
et al 2021).

Such correlations between climatic change and
human demography cannot easily reveal causation,
let alone the motivations for human action. As a res-
ult, HCS scholars have attempted more direct tests
of the effect of climate on demographics, by link-
ing environmental variables to the level of gene flow
(and thus divergence) among contemporary popula-
tions. Analyses ofmodern genomes inAfrica (Petkova
et al 2016) and Eurasia (Pagani et al 2016) have
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suggested that deserts and mountains were long the
principal barriers limiting human movement, while
coastal areas acted as corridors. Such studies use a
static approach in which modern climate is correl-
ated with genetic divergence, but the diachronic effect
of climate change is ignored. Recent publications
have attempted to explicitly account for the histor-
ical influence of climatic changes on demography,
by integrating climate reconstructions of the Pleis-
tocene and Holocene within Climate Informed Spa-
tial GeneticModels. In thesemodels, population sizes
are either predicted by fluctuating climatic variables
such as aridity and temperature, or by primary pro-
ductivity. The models are able to reconstruct the level
of divergence found in both modern (Eriksson et al
2012) and ancient genomes (Delser et al 2021), and
confirm the important role of deserts and moun-
tains in shaping gene flow over time.Moreover, genet-
icists have found that, in the Holocene, the level
of genetic admixture between hunter-gatherers and
farmers increased in areas with low Growing Degree
Days, a measure of climate that predicts the accumu-
lated heat available for crop growth. Highermixing—
suggesting more interaction between both groups—
occurred when and where climatic conditions con-
tributed to less successful food production (Betti et al
2020).

Geneticists have also connected shifts in the cli-
mates experienced by Pleistocene hunter-gatherers,
owing either to migration or orbitally forced climatic
changes, to genetic adaptations that persist in human
populations. Some of these adaptations are contro-
versial. For example, genetic research has shown that,
sometime between 6 and 10 000 BP, a genetic muta-
tion affected theOCA2 gene in European populations
and led it to reduce the production of melanin in
irises (Eiberg et al 2008). The result was the emer-
gence of blue eyes in human populations. The OCA2
mutation may have been an indirect adaptation to
climatic warming, because the end of the Younger
Dryas in approximately 11 700 BP allowed European
populations to live at higher latitudes, where there
would have been less sunlight in winter. Blue irises
absorb more light than brown irises, and the blue-
eyed may have been resistant to Seasonal Affective
Disorder caused by lack of winter light. Other genet-
icists have proposed sexual selection as an import-
ant driver for the evolution of blue irises, but this
explanation does not necessarily preclude a climatic
cause (Workman et al 2018). Versions of genes asso-
ciated with lighter skin—primarily SLC24A5 and
SLC45A2—may have emerged at approximately the
same time in European populations that had settled
across high European latitudes in the wake of the
LGM. These genetic versions may have benefited
European populations by facilitating vitamin D pro-
duction when ultraviolet light is limited (Jablonski
and Chaplin 2010). However, aDNA has recently
revealed that SLC24A5 was associated with the spread

of early farmers out of Anatolia, and someMesolithic
hunter-gatherers in Europe had moderately dark skin
(e.g. Olalde et al 2014, Ju and Mathieson 2021).

Explicit tests for association between SNP fre-
quencies and climatic reconstructions indicate that
climate-influenced selection is the likely explanation
for the rise in the frequency of some genetic vari-
ants (Hancock et al 2008, 2011). The variants with
the strongest signals tended to be associated with
pigmentation and UV radiation, as well as infection
and immunity (Hancock et al 2008, 2011). Further-
more, such studies have highlighted a number of
SNPs (such as LEPR R109K and FABP2 A54T) that
are associated with phenotypes favoring cold toler-
ance (Hancock et al 2008). In some instances, variants
found to be associated with climate adaptations are
known to increase the risk of autoimmune or meta-
bolic diseases, which are likely to be pleiotropic effects
of selection for an advantageous phenotype. A num-
ber of ailments currently seen in contemporary popu-
lations may therefore be the product of past selection
to better withstand challenging climatic conditions.
For example, geneticists have argued that a muta-
tion in the TRPM8 cold receptor, which is common
across higher latitudes, has helped populations regu-
late body temperatures in cold weather while increas-
ing the prevalence of migraines (Key et al 2018).
Genetic research has therefore revealed intriguing
correlations between climatic changes, local environ-
mental transformations, and genetic mutations, but
HCS scholars who use genetic evidence can for the
most part only infer causal connections.

8. HCS findings: archaeology

There is now little doubt among archaeologists that,
in the broadest sense, early human history was shaped
and constrained by climate change. Archaeological
evidence supports genetic evidence that correlates
changes in hominin populations with climatic shifts
during the Pleistocene (Hublin and Roebroeks 2009,
Dennell et al 2011, Pedersen et al 2021, Maier
et al 2021, Timbrell et al 2022, Timmermann et al
2022). Archaeologists emphasize, however, that the
climatic oscillations of the Pleistocene helped encour-
age both biological and cultural adaptations within
these populations that ultimately enabled environ-
mentalmodifications by human communities at ever-
increasing scales (Roberts and Stewart 2018, Riede
2019, Murray et al 2021).

The roots of farming lifestyles stretch back into
the Pleistocene, yet the Neolithic Revolution—the
widespread dissemination of agriculture and the tech-
nological and cultural innovations that accompan-
ied it—unfolded only with the onset of the Holo-
cene (Simmons 2011). Interglacial periods during
the Pleistocene were in all probability at least as
warm as the Holocene. Yet archaeologists have long
argued that the globally warm and stable climate
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of the Holocene permitted the expansion of agri-
culture once the selection pressure of earlier cultiv-
ation yielded cereals productive enough to sustain
human populations (Richerson et al 2001). Some
archaeologists, however, argue that many hunter-
gatherer communities first adopted agriculture only
during transitions from warmer and wetter to cooler
and drier conditions, which occurred in some occu-
pied regions during the Younger Dryas of the late
Pleistocene, and the 8.2 kiloyear event in the early
Holocene (Simmons 2011). According to this the-
ory, hunter-gatherer communities that expanded in
comparatively benign climatic conditions could not
easily accommodate the influence of climate change
on the fauna and flora that had sustained them, and
many were compelled either to migrate or domest-
icate plants and animals (Lieberman and Gordon
2018).

The classic case of the transition to agriculture
by Late Natufian communities in the Levant provides
ample evidence for both theories. For decades, influ-
ential archaeologists have argued that regional arid-
ification during the Younger Dryas—which is now
disputed by paleoclimatologists—reduced the size of
forests and the availability of wild cereals, compelling
some Natufian communities to cultivate grains that
were increasingly difficult to obtain otherwise (other
communities adapted by developing new hunting
technologies, but they did not survive) (Bar-yosef
1998, Stein et al 2010, Liu et al 2013). Excavations
of, for example, rye seeds at the Natufian site of Abu
Hureyra may suggest that this transition to agricul-
ture coincided with the onset of the Younger Dryas
in approximately 13 000 BP. Yet many archaeolo-
gists have found evidence that contradicts the idea
of a Late Natufian subsistence crisis (Colledge and
Conolly 2010). Some conclude that the Late Natufian
transition to farming occurred only after the Younger
Dryas had subsided. According to this view, grow-
ing populations spurred the development of new and
more reliable means of obtaining food, and a wet,
warm climate made agriculture more viable than it
had been (Willcox et al 2008, 2009). Archaeological
evidence can suggest causation more clearly than
genetic evidence alone, yet it is often fragmentary and
open to contradictory interpretations. Debates there-
fore persist over whether communities were pushed
or pulled towards agriculture by climate change,
and indeed over the extent to which climate change
mattered at all (Maher et al 2011).

Agriculture where it developed demanded and
enabled new forms of storage and stationary infra-
structure, which in turn helped some populations
withstand climatic trends and anomalies. Agricul-
ture also transformed labor relations and political
structures. Most agricultural societies developed to
be hierarchical and territorial, a process that while
neither universal nor inevitable, eventually culmin-
ated in the emergence of states and empires (Graeber

and Wengrow 2021). Archaeologists have found that
climatic anomalies and trends accelerated some of
these developments. Archaeologists and paleoscient-
ists have for example tied the gradual emergence
of Pharaonic Egypt to the desertification of north-
ern Africa, which likely inspired some pastoral com-
munities to migrate to the fertile Nile delta (Manning
and Timpson 2014, Williams 2021). Indeed some
centralized political systems developed because they
were able to better coordinate responses to climatic
perturbations (Wu et al 2016). Yet the commitment
to stationary resources in such systems also raised the
cost of migration as an adaptive response to climate-
induced hardship. Archaeologists have long argued
that communities developed distinct and at times
contradictory risk management strategies with vary-
ing degrees of success, which together contributed to
lags between climatic changes and social responses in
many societies (Laland and Brown 2006).

Nevertheless, proposed subdivisions in the Holo-
cene can also be understood as periods of large-
scale transformation in human societies (Walker
et al 2019a, 2019b), even if the manifestations of
these events varied regionally (LeGrande et al 2006,
Morrill et al 2013). Archaeologists have devoted con-
siderable attention to both the 8.2 and 4.2 kiloyear
event. By 8200 BP, lower latitudes were mostly occu-
pied by farming communities, and larger settlement
agglomerations, such as Catal Huyük in present-
day Turkey, already had populations numbering in
the thousands. At higher latitudes, hunter-gatherer-
fisher communities had pushed into remote reaches
of the Arctic. Archaeologists have shown that the
regional manifestations of cooling and drying led
to the widespread abandonment of settlements in
the eastern Mediterranean, for example, and migra-
tion towards the west (Weninger et al 2006), likely
by depressing agricultural productivity. At the same
time, marked cooling in northern Europe and a
major North Sea tsunami generated by a massive
undersea landslide off the Norwegian coast together
led to dramatic population declines (Manninen
2014, Wicks and Mithen 2014, Waddington and
Wicks 2017, Manninen et al 2018, Jørgensen et al
2020).

Archaeologists have found it harder to discern
clear correlations between the 8.2 kiloyear event and
the trajectories of societies in mid-latitudes (Grif-
fiths and Robinson 2018, Van Maldegem et al 2021).
Around the Mediterranean and Saharan Africa, arid-
ification associated partly with the 8.2 kiloyear event
(see Tierney et al 2017b) likely affected population
densities (Manning and Timpson 2014), migrations
(e.g. Weninger et al 2006, Berger and Guilaine 2009)
and cultural expressions (e.g. Sereno et al 2008), as
well as perhaps facilitating the emergence of new
forms of social organization (Kuper and Kröpelin
2006). Regional differences in the environmental
expressions of this climatic event, coupled with the
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different background conditions of affected societ-
ies, generated widely divergent outcomes for contem-
porary populations as well as lags and asynchron-
ies between climatic and cultural changes (see Maher
et al 2011). Some societies were resilient, while others
likely underwent some degree of societal collapse.

Ancient Egypt ultimately depended on irriga-
tion agriculture, as did powerful states across South-
west Asia. Other regional states relied on rain-fed
farming and extensive pastoralism, while early states
across the Indian subcontinent exploited regular
monsoon rains. The 4.2 kiloyear event appears to
have caused changes in the frequency, timing, and
extent of rainfall in these regions (see Jones et al
2019). By interpreting evidence from sites such as
Tell Leilan in Syria, archaeologists have argued that
prolonged drought provoked the collapse of con-
temporary empires, including most famously the so-
called Akkadian Empire (Weiss et al 1993, Cullen et al
2000, Weiss and Bradley 2001). It now seems that
these climatic changes had some influence over the
demographic and political development of empires,
but also that their impacts varied from region to
region and did not devastate every polity (Weiss 2017,
Lawrence et al 2021, Lawrence et al 2021). There
were winners and losers in what clearly constituted
a complex political landscape (see Scanlon 1988).
Archaeologists have found that contemporary polities
were both inherently unstable and capable of mount-
ing effective and diverse adaptive responses to cli-
matic perturbations. During the 4.2 kiloyear event,
lags caused by these culturally mediated responses
may again have weakened chronological correlations
between climatic and some social changes, or the cli-
mate changes themselves may not have been coeval.

Climatic changes may have hastened the decline
of some ancient empires by undermining their agri-
cultural foundations, yet it is often difficult for
archaeologists to determine the relative contribu-
tion of climatic influences to political and eco-
nomic trends (Sinha et al 2019). These complexit-
ies are especially clear in archaeological studies of
regional climatic changes and social responses along
the Desert and Steppe Silk Roads, which long connec-
ted economies and cultures across Eurasia (Yang et al
2019). Scholars have linked regional drying trends
from 3500 BP to a broadmovement towards urbaniz-
ation and irrigation along the classical Silk Roads, and
then a shift towards wetter conditions to the dawn of
a golden era in Silk Road trade (Hill 2019). Yet they
have also established that regional responses to cli-
matic trends and anomalies were diverse and often
effective, depending more on the internal character-
istics of communities and societies than the nature
ormagnitude of environmental change (Panyushkina
et al 2019, Xu et al 2019, Yang et al 2019).

Archaeologists have uncovered similarly complex
evidence for societal upheavals during the LALIA.
In Northern Europe and the Eastern Baltic region,

textual sources are absent but archaeological evid-
ence abounds. Archaeological evidence for societal
responses to the LALIA remains open to conflicting
interpretations (Moreland 2018), but most archae-
ologists argue that the sixth century was a troubled
time in the region, with major breaks in settlement
structure, land-use, demography, and cultic practices
(Price et al 2015, Newfield 2018). Cooling led to
years of extreme frost, the spread of cereal fungi, and
ultimately poor harvests that culminated in a wide-
spread agricultural crisis (Widgren 2012, Bondeson
andBondesson 2014,Helama et al 2018, 2019). Rising
mortality may have been exploited strategically by
Swedish elites, who acquired abandoned land and
thereby increased their political power (Löwenborg
2012). Across Norway and the eastern Baltic, archae-
ological evidence suggests a sharp decline in cultural
activity and population during the LALIA (Tvauri
2014, Solheim and Iversen 2019).

In Denmark, soils were more fertile, growing
days were more abundant, and economic connec-
tions were closer to the rest of Europe. Archaeolo-
gical sources suggest that the impacts of the LALIA on
Danish communities were accordingly more diverse.
They reveal, for example, ritual responses in the form
of starkly increased depositioning of valuables related
to the contemporaneous Sun-cult. They indicate that
while some settlements declined, others were foun-
ded, and new decorative designs and power relations
emerged (Hoilund Nielsen 2005).

The LALIA may have had even more profound
cultural consequences in Scandinavia. Recorded in
writing only many centuries later, Nordic eschato-
logy around the ‘Fimbulwinter’ as omen and pre-
lude to the end of the world—or at least to social
order—may have emerged during the LALIA, and
could constitute an effort to grapple with the social
responses to climatic change that archaeologists have
uncovered (Axboe 1999, Gräslund 2007, Gräslund
and Price 2012, Nordvig and Riede 2018,van Dijk
et al preprint). While less information is available
from the Americas during the LALIA and therefore
the regional climate manifestation and the causes of
societal change remains poorly resolved, this period
did correspond with a sixth-century Maya ‘hiatus’
(Curtis et al 1996, Dunning et al 1999, DeMenocal
2001, Nooren et al 2017, Dull et al 2019).

Centuries later, during the Medieval Climate
Anomaly (MCA), Norse settlers occupied Iceland and
parts of coastal Greenland and Canada. Archaeolo-
gists once concluded that North Atlantic warming
allowed the Norse to establish settlements in Green-
land partly by reducing the extent of Arctic sea ice,
which made it easier to navigate near Greenland, and
by allowing Norse settlers to import agro-pastoral
practices from Iceland (Hambrecht 2015). Follow-
ing this logic, Norse settlements disappeared with the
onset of the LIA in the fourteenth and fifteenth cen-
turies because sea ice severed their links with Europe,
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and subsistence strategies that worked at lower lat-
itudes could no longer function in cooler weather
(McGovern 1980, 1981).

Yet many archaeologists—including some
responsible for originally characterizing the Norse
as inflexible—now emphasize that Norse settlers
developed traditional ecological knowledge attuned
to diverse environments across the northern Atlantic
(Dugmore et al 2009, 2013). In Greenland, Norse set-
tlers organized communal labor across dispersed set-
tlements and abandoned cod fishing for communal
hunts of migratory harp and hooded seals, which
filled a springtime provisioning gap. They learned
to build driving lanes for caribou; improve farming
through drainage, irrigation, fertilization, and fen-
cing; and acquire live polar bears, narwhal teeth, and
walrus tusks and hides for European markets. A vast
literature now explores how the flexible Greenlandic
Norse adapted to century-scale sea level increases,
decadal cooling trends, and interannual weather vari-
ability (Dugmore et al 2012, Jackson et al 2018a).

New explanations for the rise and decline ofNorse
settlements inGreenland aremulticausal (Hambrecht
2015). Summer sea threatenedNorse efforts to organ-
ize communal labor and travel to walrus hunting
grounds that sustained the Norse economy. Rising sea
levels eroded lowland pasture, and togetherwith cool-
ing temperatures exacerbated the growing depend-
ency of small farmers on large magnate farms. The
relatively small western (northern) settlement disap-
peared in the fourteenth century CE. The larger east-
ern (southern) settlement endured by intensifying
the communal seal hunt, yet more frequent storms
made this an increasingly perilous activity (Dugmore
et al 2012). The exquisite adaptations that the Norse
made to their Greenlandic environment made them
more vulnerable when that environment changed
(Dugmore et al 2013, Jackson et al 2018a).

Economic and demographic changes beyond the
control of the Greenlandic Norse compounded those
vulnerabilities. The migration of potentially hostile
and technologically more sophisticated Thule Inuit
communities into the outer fjords around the east-
ern settlement may also have complicated the Norse
seal hunt. Moreover, the declining popularity of wal-
rus ivory in Europe—and the growing dominance
in Arctic commerce of the Hanseatic League, whose
merchants traded fish rather than luxury goods—
undermined the foundations of the Greenlandic eco-
nomy (Barlow et al 1997, Dugmore et al 2012). The
old story of Norse inflexibility is also not entirely
withoutmerit. There is no evidence, for example, that
the Norse adopted Thule technologies—such as the
toggling harpoon—and individualistic hunting prac-
tices that would have allowed them to hunt plenti-
ful bearded and ringed seals in winter. Yet the fate of
the Norse is now widely interpreted as a case study in
the often nonlinear consequences of climate change
for populations, which can overwhelm even initially

successful adaptation (Dugmore et al 2009). The story
of human settlement in LIA Greenland is in any case
as much a story of Thule resilience as it is Norse col-
lapse, but the Thule experience of climate change has
attracted far less attention fromarchaeologists (Grøn-
now et al 2011).

In recent years, archaeologists have similarly
reimagined other charismatic case studies of collapse
in the Common Era, outside of the simple frame-
work of the LIA or MCA, that once seemed like
straightforward consequences of climatic change or
variability. Many of these involve the purported col-
lapse of hydraulic societies, such as the Tiwanaku in
the twelfth-century Andes and Angkor in fifteenth-
centuryCambodia (Binford et al 1997, Erickson 1999,
Buckley et al 2010). Of these examples, the best-
known concerns the apparent collapse of Lowland
Classic Maya polities across the Yucatan Peninsula in
the ninth and tenth centuries CE (Huntington 1913b,
Kennett et al 2012, Turner and Sabloff 2012, Webster
2012, Marx et al 2017). To cope with the lack of
surface water in the upland area of the peninsula,
the Maya constructed an intricate system of dams,
reservoirs, wells, and canals—as well as terraces and
check dams to control soil erosion and leaching—
that may have left them vulnerable to longer or
more frequent fluctuations in precipitation (Douglas
et al 2016). Paleoclimatologists first discerned evid-
ence for a series of catastrophic ninth- and tenth-
century droughts in sediments extracted from Lake
Chichancanab, in northern Yucatan. Some paleo-
climatologists and some archaeologists argued that
these droughts forced the abandonment of Classic
Mayan settlements and thereby caused the long-term
decline of Mayan culture (Hodell et al 1995, Curtis
et al 1996).

Other scholars, including archaeologists, poin-
ted out that Maya polities in the driest areas were
abandoned last, and that the societal, political, and
demographic manifestations of collapse had other
plausible social causes. Some critics argued that the
Classical Maya did not collapse at all; rather, their
culture and population merely became less visible
in the archaeological record (McAnany and Yoffee
2010). The persistence of Mayan culture and iden-
tity subsequently led other scholars and activists to
emphasize the resilience of many Maya communities
to even the sixteenth-century Spanish Invasion and
the late nineteenth-century Caste War (Braswell and
Alexander 2014).

Further work in the region has uncovered more
and higher resolution paleoclimate evidence—
derived most importantly from speleothems—for
repeated and severe droughts across the Yucatan
Peninsula in and just after the Terminal Classic
Period (Kennett et al 2012, Douglas et al 2016,
Medina-Elizalde et al 2016). Archaeologists increas-
ingly incorporate these droughts within multicausal
explanations for the transformation of ClassicalMaya
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society. In these explanations, synergistic pressures
including widespread deforestation, owing in part to
overpopulation; conflict within and between polities;
and the rerouting of trade networks that once passed
through the Central Maya Lowlands all rendered
many Classical Maya polities increasingly vulner-
able to drought (Lucero 2002, Dunning et al 2012,
Turner and Sabloff 2012). Some Mayan adaptations
to climatic variability seem to have mirrored those
of the Norse to climatic cooling, and created sim-
ilar vulnerabilities. Widespread adoption of water-
conservative maize cultivation across the lowlands
amid droughts in the third through the sixth centur-
ies CE, for example, resembled the adaptive switch
to seal hunting by the thirteenth- and fourteenth-
century Norse (Ebert et al 2017). Owing in part to the
inflexibility of Norse andMayan elites, both strategies
seem to have been inadequate and indeed maladapt-
ive in the face of combined climatic, socioeconomic,
and political stressors in later decades and centuries
(Douglas et al 2015, Ebert et al 2019).

In any case, there is limited archaeological evid-
ence for mass starvation and mortality in Clas-
sical Maya polities, suggesting that these stressors
encouraged adaptive migration and resettlement
(Turner and Sabloff 2012). Indeed, archaeologists
have recently argued that stratified societies inGreater
Amazonia that, in pre-Columbian centuries, relied
on extensive infrastructure to control water—such
as the Classical Maya—were less resilient in the face
of prolonged drought than egalitarian societies with
diverse and flexible subsistence strategies founded
on polyculture agroforestry (De Souza et al 2019).
Because such societies may be less visible in the
archaeological (or historical) record—much like the
Thule in Greenland—the emphasis by many HCS
archaeologists on collapse may reveal a statist bias.
Some archaeologists have argued that what may at
first appear in the archaeological record as evidence
of catastrophe can also be interpreted as an indica-
tion of dramatic but successful adaptation to climatic
change or variability.

In sum, the archaeological record offers strong
evidence that climatic changes provoked profound
transitions in many societies during both the Pleisto-
cene and Holocene. Yet there is also ample archaeolo-
gical evidence for the persistence of communities and
especially cultures amid changing climates. With its
wide array of proxies relating to both past economies;
trade andpower networks; and ideologies and cosmo-
logies, the archaeological record offers insights into
the risk management strategies that societies adopted
in the face of past climate change. Different forms of
societies prioritized different response strategies, with
migration the leading strategy for inherently mobile
populations of pastoralists and foragers, and the least
appealing, costliest option for sedentary agricultural
societies. The latter could often draw on more or less
effective means of buffering against sustained climate

changes, which either delayed the catastrophic impact
of such changes or allowed agricultural societies to
remain resilient sufficiently long for a given stressor to
abate. Most episodes of societal collapse did not lead
to the total disappearance of societies, let alone cul-
tures, yet definitions of resilience rooted in cultural
persistence should be mindful not to ignore the polit-
ical, socioeconomic, and especially the demographic
costs associated with climate-driven collapses in the
archaeological record.

9. HCS findings: history

Historical studies in HCS have long concentrated on
periods and places that are well documented by sur-
viving documents and art. This focus partly accounts
for the disproportionate attention given by climate
historians to Europe, and to some extent its colon-
ies, during the LIA. The widespread adoption in early
modern Europe of the printing press coincided with
the strengthening of state bureaucracies to encourage
the widespread proliferation of documentary evid-
ence for weather and societal responses to weather.
Plentiful and diverse documents allow climate his-
torians to identify causal connections between large-
scale climate changes, local or regional environmental
transformations, and human responses at a much
higher resolution than is usually possible for scholars
in other disciplines (Pfister and Wanner 2021).

By using archives of societies alongside archives of
nature, climate historians have established that tem-
perature and precipitation extremes associated with
the coldest decades of the LIA decreased the accessib-
ility and inmany cases the availability of food and fuel
for communities across Europe. The weather condi-
tions that proved most damaging to contemporary
agriculture varied across European regions (White
et al 2018a). Historians have concluded that in gen-
eral temperature mattered most for agriculture in
Northern Europe, where frost could shorten grow-
ing seasons and thereby devastate the autumn har-
vest. Temperature and precipitationwere both equally
important for agriculture in Western and Central
Europe, where cold in spring and summer, and heavy
rains in summer and autumn, typically posed the
most severe risks to harvests. In the Mediterranean,
springtime droughts were especially damaging, as
were bitterly cold winters (Ljungqvist et al 2020).

Historians have found that precipitation extremes
lowered the quality and quantity of hay for domestic
animals, which not only provided food in the way
of dairy and meat but also the commodities and
labor that sustained agrarian economies (D’Arrigo
et al 2020). Severe winters killed domestic anim-
als directly and delayed when they could consume
fresh grass in the spring, which in turn reduced their
milk supply (Baten 2001). Winters are less commonly
considered by climate historians than other seasons,
partly because they are hard to reconstruct using the
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archives of nature and, in some cases, those of soci-
eties. Yet across Europe frigid winters characteristic
of the LIA disrupted plant and animal phenology;
ruined stores of food and beer; and interfered with
shipments of cereals, dairy products, fish, and fresh-
water (Cavert 2017, Degroot 2018b). Historical stud-
ies suggest that climate anomalies and trends also
influenced the distribution and accessibility of wild
animals used for food and fuel, such as fish and
marine mammals (Hacquebord 1999, Ogilvie and
Jónsdóttir 2000, Hoffmann 2005, Degroot 2022).

While historians have long accused HCS schol-
ars of environmental determinism, climate histori-
ans increasingly argue that populations were far from
helpless when weather associated with the LIA helped
cause harvest failures. They have shown for instance
that citizens within resilient communities, such as
the coastal cities of the seventeenth-century Dutch
Republic, benefitted from diverse diets and robust
traditions of civic charity (Pfister 1978, Dijkman
2018, Degroot 2018c, Curtis and Dijkman 2019).
Governments across Italy, Spain, and France adap-
ted in the immediate aftermath of poor harvests
by, for example, distributing cereals from and regu-
lating access to granaries; providing grain subsidies
(occasionally by taxing the wealthy) and limiting
grain prices; and banning grain exports while arran-
ging for emergency imports (Bauch 2019, Degroot
et al 2021).

Historians have demonstrated that European gov-
ernments and communities also pursued long-term
strategies that either purposefully or unwittingly
helped them adapt to the climatic trends of the
LIA. Farmers in Finland deserted newly unproductive
farms or adopted new crop varieties and cultivation
strategies in the wake of particularly cold decades of
the LIA, for example (Huhtamaa and Helama 2017a,
2017b). Across Europe, farmers diversified their crops
by adopting rye, oats, or barley, which tolerate cold
and wet conditions, or took up animal husbandry
and even apiculture (Landsteiner 2001, Mrgic 2011,
Tello et al 2017). Dutch farmers and guilds developed,
refined, or exploited new technologies and transport-
ation networks that allowed them to move agricul-
tural commodities from domestic zones of produc-
tion to centers of consumption in nearly any weather.
Dutch merchants deployed newly efficient ships to
dominate much larger trade networks that integ-
rated grainmarkets and thereby buffered populations
from local grain shortages (De Kraker 2017, Degroot
2018c).

Nevertheless, climate historians have long
devoted special attention to climatic anomalies dur-
ing the LIA that overwhelmed communal capacities
for resilience and adaptation. Historians contributed
to early efforts to link climate change to the disap-
pearance of Norse settlements in western Green-
land, for example, then joined archaeologists and
paleoscientists to reinterpret what initially seemed

like a straightforward case of climate-driven collapse
(Utterström 1955, Barlow et al 1997, Dugmore et al
2012, Jackson et al 2018a). Historians have since
connected so many other disasters across main-
land Europe to the climate of the LIA that several
studies now identify periods when temperature and
precipitation anomalies, associated in some cases
with explosive volcanic eruptions, helped provoke
continent-wide subsistence crises (Degroot 2018b).

Historians have, for example, linked European
subsistence crises to low temperatures or precipit-
ation extremes in the mid-thirteenth century, the
early fourteenth century, the early fifteenth cen-
tury, and the late sixteenth century (Jordan 1996,
Campbell 2016, Camenisch et al 2016a, 2016b, Pfister
et al 2018). Influential studies argue that the seven-
teenth, eighteenth, and nineteenth centuries were all
bookended by periods of extremeweather that helped
raise food prices and thereby unleashed fatal syn-
ergies across Europe, and occasionally in European
colonies (Davis 2002, Pfister 2007, Behringer 2017,
Parker 2018). Some historians argue that, in many of
these periods, economic, political, and demographic
pressures created sources of vulnerability that greatly
worsened the synergistic social consequences of fri-
gid, wet, or dry weather. Influential studies identify
overpopulation, endemic warfare, and reductions in
trade or purchasing power—brought about partly
through deflation or inflation—as contributors to
vulnerability. Some also emphasize the shortcomings
of contemporary governments, which either would
not or could not effectively organize to relieve high
food prices (Davis 2002, Parker 2013).

Climate historians have therefore consistently
argued that, even in recent centuries, fluctuations in
temperature and precipitation that were far smaller in
magnitude than those already caused by global warm-
ing nevertheless plunged large and powerful polities
into crisis. Other historians claim however that this
conclusion is based more on crude correlation than
causation; assigns undue importance to exogenous
versus endogenous causes for subsistence crises; or
reverses the correct chain of causation by for example
conceptualizing climate change as a cause of war,
rather than war as a cause of vulnerability to cli-
mate change (Warde 2015, Kreike 2021). Some cli-
mate historians argue that the proliferation of studies
linking the LIA to harvest failures and societal crises
reflects how studies are designed and the evidence
they use, more than the relationships between past
climate change and social outcomes that were most
common or consequential (Degroot et al 2021).

Nevertheless, in recent decades historians have
uncovered many similar connections between LIA
climate anomalies and subsistence crises beyond
Europe. Historians have argued for example that
drought (Cook et al 2010a) and perhaps cool-
ing across China and its northern borderlands
repeatedly ruined harvests, reduced tax revenues,

19



Environ. Res. Lett. 17 (2022) 103001 D Degroot et al

and inspired revolts against the Ming Dynasty, while
encouraging raids by pastoralists that ultimately led
to the seventeenth-century ascension of the Qing
Dynasty (Brook 2010). They have shown that the
rising dependence of the sixteenth-century Ottoman
Empire onwinter crops grown on semi-arid farmland
left it vulnerable to severe drought at the end of the
century, which combined with inflation and milit-
ary requisitions to devastate the countryside. Migrat-
ing peasants spread epidemics of bubonic plague
and anthrax, and many gathered in rebellious armies
that eventually threatened the survival of the empire
(White 2011). Historians have claimed that precip-
itation extremes ruined harvests and thereby under-
mined empires in sixteenth-century sub-Saharan
Africa, inspiring waves of migration just as the
European slave trade entrenched itself (Miller 1982,
Webb 1995). They have also argued that cooling,
drought, and pluvials ruined crops and thereby
undermined contemporary colonization efforts in
North America, while weakening Indigenous polities
that might otherwise have offered stiffer resistance to
European settlers (White 2017, Skopyk 2020).

The most compelling metanarrative advanced by
climate historians may therefore be that the LIA
provoked one or more ‘global crises,’ when cooling
and precipitation extremes caused prolonged food
shortages and political upheaval on continental, even
hemispheric scales. Yet historians have started to
move well beyond their longstanding focus on sub-
sistence crises in agrarian empires. For example, new
histories consider not only—or not at all—how cli-
mate anomalies helped provoke war, but also how
they affected the course of wars already underway
(Wickman 2018b, Degroot 2020, 2022). Since most
wars have a victor and a loser, such histories reveal
that the telltale weather of LIA cold periods in dif-
ferent regions could offer both advantages and dis-
advantages to contemporary populations (Degroot
2014, Wickman 2015).

Climate historians increasingly consider how
populations found ways to thrive during the LIA,
often in regions—such as the open sea or across
Indigenous North America—that have been largely
ignored in previous histories (Endfield 2012, Parker
2013, Wickman 2018a, Degroot 2018c). Some his-
torians join scholars in other disciplines to identify
strategies that diverse populations followed to
exploit—or at least cope with—climatic anomalies
and trends (Adamson et al 2018, Degroot et al 2021).
Historians have also emphasized that some popula-
tions and institutions within societies were resilient
or adaptive in the face of climate change despite—or
because of—the vulnerability of other populations
(Soens 2018, Van Bavel et al 2018). New histories
uncover the agency of people and animals confronted
with climate change, and thereby reveal how environ-
ments seemingly rendered less productive by the LIA
could still be exploited with unprecedented intensity

by human communities (White 2014, Degroot 2022).
An emerging metanarrative in climate history there-
fore explicitly contradicts the field’s longstanding
theme of global crisis by emphasizing diverse, contin-
gent, and occasionally counterintuitive relationships
between climatic anomalies and human responses.

While climate historians have long focused on the
LIA, which is rich in both historical and paleocli-
mate data, they increasingly consider earlier periods
of climate change. New histories, for example, con-
sider harvest failures and other social consequences
of droughts, pluvials, and temperature anomalies
during the MCA (Kiss 2019, Kiss and Pribyl 2020,
Pribyl 2020). Recently, historians have uncovered
and refined case studies of ancient societies that
coped with and occasionally succumbed to regional
droughts and cold spells (Haldon 2016, Erdkamp et al
2021). The LALIA is emerging as a period of special
interest for climate historians, though confusion over
its likely magnitude, duration, and spatial extent—
a partial consequence of the limited textual record
of the sixth century CE—has inspired competing
‘maximalist’ and ‘minimalist’ interpretations of con-
temporary social responses (Sessa 2019). Maximalist
interpretations draw on fragmentary archaeological,
paleoenvironmental, and especially historical evid-
ence to identify large-scale connections between cool-
ing, the spread of plague, mass mortality, and the
collapse of societies, especially the Western Roman
Empire (McCormick et al 2012, Büntgen et al 2016,
Harper 2017). Minimalist accounts emphasize resili-
ence by concentrating on local relationships between
climatic anomalies and social responses that can be
clearly identified using surviving sources (Newfield
2016, Haldon et al 2018a, Erdkamp 2021).

This division is, in some respects, an exagger-
ated version of the tension between metanarratives
developed by climate historians for the later LIA. It
reflects differences between historians over the appro-
priate integration of historical methods and sources
with those of other disciplines, as well as differences
over the value of correlation in suggesting causation.
It reveals another theme in climate history: the sheer
difficulty of establishing widely agreed-upon connec-
tions between climate changes and human actions,
which have historically unfolded across very differ-
ent scales in time and space. Similar challenges con-
front scholars—including increasingly historians—
who attempt to use far more abundant evidence
than is available for pre-industrial periods to identify
links between anthropogenic global warming and, for
example, migration and conflict (Selby et al 2017).

One of the most important developments in
climate history has been a growing ‘turn’ towards
studies that consider the cultural dimensions of cli-
mate change (Williamson 2020).Historians and other
scholars have long argued that decadal changes in the
subjects and even the colors of European paintings
reflected the climatic trends of the LIA, or at least the
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volcanic eruptions that caused its coldest years (Sager
2006, Behringer 2010, Degroot 2018c). They have also
claimed that popular understandings of the causes
for extreme weather, in central Europe in particular,
contributed to the persecution of Jews and accused
witches during some of the chilliest decades of the
LIA, although other historians have disagreed with
these claims (Behringer 1999, Oster 2004, Bell 2008,
Leeson and Russ 2018). Recently, some of the most
compelling historical work on the cultural dimen-
sions of past climate change examines how and why
severe weather was remembered, forgotten, and used
to justify political or military projects (Oberholzner
2011, Sundberg 2015, Zilberstein 2016, Skopyk 2020).

Cultural histories of climate change can be prob-
lematic, however, when they assume broad connec-
tions between modest climatic changes and cultural
transformations that had more plausible social, eco-
nomic, and political causes (Blom 2019). The impact
order model has helped historians confront such
determinism, at the cost of encouraging the assump-
tion that cultural responses to climate change were
inevitably filtered through more direct agricultural
and economic responses (Ljungqvist et al 2020). Yet
recent histories find increasingly diverse and plaus-
ible connections between periods of climate change
such as the LIA and local cultural expressions, includ-
ing in architecture, technological development, reli-
gious practice, and scientific theory (Degroot 2018c,
Barnett 2019, Ray 2019, Pluymers 2020, Fisher 2021,
Li et al 2021). Climate historians have therefore
shown that the human consequences of even mod-
est climate changes can be exceptionally far-reaching,
affecting nearly every aspect of lived experience, albeit
often in subtle ways that can be difficult to distinguish
from other historical influences as they unfolded
gradually over time.

10. HCS findings: geography and
economics

Most studies in HCS, regardless of their discipline,
start when scholars identify one or more correlations
between climatic and social change. Many scholars
who follow the cause-of-effect method—including
nearly all historians—use correlations as a starting
point for establishing causation in case studies that
are typically constrained in time or space. For them,
causation can be identified through inferences based
on qualitative as well as quantitative sources, with the
caveat that it can never be established with certainty
(White and Pei 2020).

Geographers and economists, however, have long
pioneered the alternative effect-of-cause method, in
which correlations between quantified sources are
often not the beginning but the end of research pro-
jects (figure 3). If enough statistically significant cor-
relations exist between two datasets, those correla-
tions according to the effect-of-cause method can

reveal causation more reliably and precisely than
inferences based on qualitative evidence. The chal-
lenge for geographers and economists has been to
identify evidence for historical changes in human
populations that either is quantified or that can be
quantified on spatiotemporal scales large enough for
them to identify many possible correlations with cli-
matic trends (Degroot 2018a).

This challenge has motivated geographers and
some economists to focus on whether wars were
historically caused by trends in precipitation and
drought. Wars can have precise, quantitative defini-
tions, meaning that a conflict must cross a threshold
of combat-related deaths to be labeled a war. Using
such definitions, geographers and economists have
assumed that for regions with a rich record of textual
evidence, the spatial extent, duration, and destruct-
iveness of wars can be identified reliably enough to
chart their annual regional frequency over decades,
centuries, and in some cases even millennia. They
then compare fluctuations in the frequency of war
with trends in reconstructed temperature or precip-
itation. Chinese geographers pioneered these meth-
ods by identifying significant correlations between
drought, cooling, and conflict across imperial China
(Zhang et al 2006, 2010). Economists and geo-
graphers then found similar correlations in Europe
during the LIA, and in sub-Saharan Africa dur-
ing the period of recent anthropogenic warming
(Burke et al 2009, Lee et al 2019). Together, these
studies suggest that cold, dry conditions were per-
ilous for pre-modern states, but also that growth
in warm, wet decades could exacerbate destabilizing
resource shortages when climatic conditions changed
(Fang et al 2019).

In recent years, geographers and economists have
used statistical methods, such as wavelet analysis and
Granger causality tests, to attempt to confirm the
causation implied by significant correlations. New
work has employed superposed epoch analysis to
account for the conclusions of many cause-of-effect
studies, which identify lags between climatic and
social changes that were caused both by societal
adaptations and by the systematic complexities of cas-
cading and compound climate change impacts (Gao
et al 2021). Some of these methods seem to establish
that climate did in fact control the frequency of war
and even the likelihood of dynastic collapse in dis-
tinct regions, environments, and socioeconomic or
political contexts (Gao et al 2021, Zhang et al 2022).
However, scholars have used statistical methods, such
as Bayesian modeling, that compensate for some of
the shortcomings and uncertainties in war frequency
datasets to suggest that correlations detected in earlier
studies of, for example, war in Europe did not actually
exist (Peregrine 2020, Carleton et al 2021a, 2021b).

Nevertheless, many scholars now attempt to
find correlations between climatic trends and social
changes that are in many cases harder to identify,
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let alone quantify, than war. Studies focusing on
imperial China, for example, have found signific-
ant correlations that purportedly reveal causation
between climate change and agricultural output,
migration, economic performance, technological
innovation, and even cultural efflorescence (Jin 2002,
Carleton and Hsiang 2016, De Dreu et al 2018, Lee
and Yue 2020, Pei et al 2020). An advantage of such
work is that statistical relationships in the past can, in
theory, be used to model future connections between
climatic and social changes. Yet critics in discip-
lines other than geography and economics argue for
example that scholars have used effect-of-causemeth-
ods naively, to quantify what is difficult or impossible
to quantify on the basis of surviving evidence (a
tendency known as the McNamara Fallacy). Critics
also claim that many such studies misuse accessible
datasets, compiled in most cases by historians, that
were never meant to provide comprehensive statist-
ical information (an observational bias known as the
Streetlight Effect) (Adams et al 2018, Van Bavel et al
2019, Degroot et al 2021).

Still, studies by geographers and economists do
provide a means by which case studies unearthed
by historians or archaeologists can be evaluated sys-
tematically across large spatial and temporal scales.
Their most important finding so far is that cli-
mate anomalies have been inherently destabilizing for
societies already suffering from considerable polit-
ical or socioeconomic stress. While this conclusion
seems to echo those of many cause-of-effect stud-
ies in history and archaeology, its implications are
broader, as it is not limited to specific case studies.
At present, publications that purport to show sim-
ilar relationships between climatic trends and social
changes that do not directly involve conflict are not
convincing, although they may suggest correlations
that can be used as starting points for interdisciplin-
ary scholarship.

11. Consilient research teams and coupled
modeling

While scholars in different disciplines have under-
taken HCS studies in distinct ways, the field’s divi-
sions betweendisciplines are not always obvious.HCS
scholarsmay, for example, have degrees in several dis-
ciplines that are relevant for reconstructing climate
changes and identifying their influence on human
populations. Close bonds have long connected schol-
ars in two or more of these disciplines. The first HCS
studies were developed through the partnership of a
geographer with a paleoclimatologist, and paleocli-
matologists have long had fruitful collaborations with
archaeologists.

Similar connections do not bridge scholars in all
the disciplines most involved in HCS studies, how-
ever, and many publications in the field consequently
misuse climate reconstructions or simplistically

assume human responses to climate change. Schol-
ars in disciplines that are often associated with the
humanities—such as history—have been largely isol-
ated from paleoscientists, owing partly to the prior-
ity given to single-authored books for promotion in
these fields; the lack of common standards of evid-
ence, approaches to uncertainty, or understandings
of causality between disciplines; and the systematic
subordination in collaborative climate scholarship of
data that cannot be quantified andmodeled (Degroot
et al 2021). Differences in vocabulary, theory, public-
ation and presentation venues as well as a mismatch
between publication incentives create further barri-
ers to collaboration. Recently, climate historians have
called for more collaborative, ‘consilient’ approaches
to HCS scholarship that involve the development
of research projects by teams with equal numbers
of participants in relevant disciplines (Newfield and
Labuhn 2017, Haldon et al 2018b). Such partnerships
can require computational methods for aligning dis-
tinct forms of data across radically different scales
in time and space. Consilient approaches can slow
the career progression of some participating schol-
ars, especially those in academic departments that are
not structured to support interdisciplinary research.
Yet they can help scholars better account for the com-
plexity of both environmental and social systems, and
thereby to identify more convincing causal connec-
tions between climatic and societal histories (Degroot
et al 2021).

Many HCS scholars believe that comparisons
between climate and social change in the past
cannot provide reliable, transdisciplinary lessons
for enhancing present-day sustainability without a
robust, mechanistic understanding of underlying
socio-environmental systems. Mechanistic models
allow scientists to formalize our abstract assump-
tions and intuitions so they can be tested, commu-
nicated, and updated as new information arises. A
community-wide approach to computational mod-
eling and model-data integration through consili-
ent research teams has been central to the success
of the climate sciences over recent decades (Edwards
2010). However, this approach has yet to diffuse to the
human historical sciences, in large part because of the
lack of standardized generative models of past societ-
ies (Romanowska et al 2021).

Complex ‘integrated assessment models’, rooted
in economic theory, are commonly used for such
purposes in contemporary sustainability studies but
have high data requirements and lack the flexibil-
ity and dynamism needed to model diverse societies
over their long-term history (Rounsevell et al 2014,
Donges et al 2017, 2020, Schill et al 2019). These
macroeconomic models operate in relative isolation
from their environmental counterparts, for example
by using the outputs of previously-run climate mod-
els as external inputs rather than running the two in
tandem.
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Figure 7. Conceptual diagram of a consumer-resource network, after Qubbaj et al (2015), with a network of cities harvesting and
exchanging food, water, and energy from their rural surroundings. The behavior of these systems is driven not only by the
dynamics of each component in isolation (e.g. population growth in cities, environmental degradation in agricultural regions) but
by the various links among these components. Indirect links, such two distant agricultural regions harvested by cities connected
by trade, are often as important for system behavior as the direct links visible in the historical and archaeological records.

Alternatively, ‘fully coupled’ models capture the
rich two-way interactions among ‘social’ and ‘natural’
subcomponents, exhibiting emergent behaviors such
as thresholds, time lags, and feedbacks that are
absent from loosely coupled alternatives (Robinson
et al 2018). A promising coupled modeling approach
represents human societies as complex ‘consumer-
resource networks,’ in which interconnected urban
systems continuously consume and exchange food,
water, energy, and other resources harvested from
their rural surroundings (figure 7) (Wilson 2008,
Qubbaj et al 2015, Dermody et al 2018, Dolfing et al
2019, O’Dwyer 2020). Although originally rooted in
theory from ecology and geography, this basic frame-
work has proven ideal forHCS studies inmultiple dis-
ciplines including demography (Lee and Tuljapurkar
2008, Puleston and Tuljapurkar 2008, Lee et al 2009),
ecological economics (Anderies 2006, Motesharrei
et al 2014, Kuil et al 2019), and cultural evolution
(Turchin et al 2013, Weinberger et al 2017).

Consumer-resource models highlight the crucial
role of scale and interconnectedness for understand-
ing complex social and environmental systems in the
past. These systems are nonlinear; for example, the
simulated social response to a drought or flood may
have little to do with the magnitude of the event
itself, but rather difficult-to-observe details of the
society’s demography, technology, and social institu-
tions (Anderies 2006, Kuil et al 2019). Often, large-
scale social responses at one time and place reflect the
lingering impacts of seemingly minor shocks in the
distant past (Eppinga et al 2021) or faraway resource
systems (Qubbaj et al 2015). Spatial and social net-
works like roads or exchange systems can either
dampen or heighten environmental impacts depend-
ing on precise details of the network’s structure
(Dolfing et al 2019). In spite of this potential com-
plexity, these modeling approaches are powerful tools
to provide us a ‘crude look at the whole’ (Gell-Mann
1995)—a relatively simple approximation a system’s

subcomponents and their mutual interactions—that
enable consilient research teams to produce more
actionable, real-world insights than would a narrow
focus on each discipline in isolation.

12. HCS for the future

Many HCS scholars study the past partly to uncover
universally applicable relationships between climatic
and social change. In identifying these relationships,
many hope to inspire climate activism or contrib-
ute to the development of climate policy. Despite this
common motivation, scholars in different disciplines
have developed distinct methods of using the past to
encourage or shape action in the present.

Economists, geographers, and paleoscientists, for
example, may draw attention to troubling relation-
ships between climatic and social trends that they
have identified in their statistical work. They quantify
these relationships and therebymotivate activism that
aims, for example, to reduce the likelihood of resource
wars in a hotter future. Archaeologists, geneticists,
and historians, by contrast, are more likely to develop
narratives that chronicle the influence of climate
change on a past population, and thereby reveal the
extent to which rapid change and warming could
shape human affairs. Narratives that explain the col-
lapse or (less commonly) the survival of societies con-
fronted with climate change have attracted consider-
able public attention (e.g. Diamond 2011) and the
concept of collapse is a powerful trope in popular
media.

To influence policy, geographers and econom-
ists have pioneered econometric methods that use
correlations between past climatic and social trends
to forecast continued correlations, and therefore
causal connections, between these trends in the future
(Hsiang et al 2013). Scholars in many disciplines
havemodeled past relationships between climatic and
social changes, occasionally in order to identify which
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social responses to future climate change will be most
destructive or most likely to occur (Nelson et al 2016,
Bauch 2020). Archaeologists and historians have also
sought to identify common characteristics in popu-
lations that made them either resilient or vulnerable
in the face of past climate changes, partly to suggest
which qualities governments should emulate or avoid
today (Dugmore et al 2013, Fang and Zhang 2017,
D’AlpoimGuedes and Bocinsky 2018, Reed and Ryan
2019, Riede and Sheets 2020, Degroot et al 2021).
By drawing on historical examples of civilizational
collapse, they have also contributed to studies that
suggest scholars and policymakers should more ser-
iously consider the possibility that ecosystems and in
turn present-day states will be unable to survive rapid
anthropogenic warming (Reichstein et al 2021, Kemp
et al 2022). Some have also identified relationships
between past climatic and social changes that schol-
ars in other fields have largely ignored, but may be
important in the future (Degroot 2022).

Nevertheless, it can be very difficult for schol-
ars to derive policy-relevant conclusions from HCS
scholarship, and then to publish these conclusions
in formats that are sensible to policymakers and
advisors. This is especially true for scholars in
humanistic disciplines—such as history—that typ-
ically emphasize contingency and historical partic-
ularity. Recently, scholars have drawn attention to
the occasionally haphazard and often generalized way
that HCS studies draw lessons from inferred long-
term changes in ancient societies to inform short-
term policy development in today’s radically different
world (Jackson et al 2022, Tubi et al 2022). SomeHCS
scholars even argue that discontinuities between past
and present social and climatic contexts are so great
that HCS studies can provide few if any lessons for the
future (Ray 2019). Yet even the recent past provides
many examples of complex communities and societ-
ies that coped with profound local and regional cli-
mate changes, and ancient populations confronted
global changes of far greater scale (D’Alpoim Guedes
et al 2016). The past inevitably offers an imperfect
guide to the future, yet for climate policy—as in other
fields—manyHCS scholars believe it provides lessons
that should not be discounted (Jackson et al 2018b,
Van Bavel et al 2020, Jackson et al 2022).

HCS scholarship, however, is generally under-
represented in assessments of the future of climate
change and in policy development. When the field
is consulted to help policymakers forecast or pre-
pare for the future, statistical studies by geographers
and economists are often given preference over qual-
itative work by scholars in other disciplines (Holm
andWiniwarter 2017). Consilient collaborations that
involve social scientists and policy advisors are cur-
rently being assembled that may help HCS scholars
overcome these challenges, and thereby offer unique
perspectives on the human future in a warming world
(Thomas et al 2019).
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